Friday, 27 February 2015

Einstein's theory of relativity can not explain ...
Lubomir Vlcek

Rokytov 132, 086 01, Slovak Republic
Email: lubomir.vlcek@gmail.com

Abstract
Einstein's theory of relativity can not explain ...
1. Movement principles of the fast-spinning pulsars,
2. Nuclear Fusion ,
3. Wave - Particle Duality as Kinetic Energy Against and In Direction of Motion
4. the 4th Maxwell's equation,
5. Lorentz equals without the help of Space-Time,
6.Confinement of quarks
7. Great Table of Elementary Particles
8. Spectral line Hα
9. Neutrino Oscillations
10. Form of the interference field must be non-linear.
11.Form of Intensity of the Moving Charge Electric Field must be asymmetrical.
12.Kinetic energy of a charge moving at the velocity of v has two different values:
Kinetic energy against direction of motion as wave
Tkin ad = mc2[ln |1+v/c|- (v/c)/(1+v/c)]
Kinetic energy in direction of motion as particle
Tkin id = mc2[ln|1-v/c|+ (v/c)/(1-v/c)]
13. Yukawa potential
1. Introduction
Through the work of Max Planck, Albert Einstein, Louis de Broglie, Arthur Compton, Niels Bohr,
and many others, current scientific theory holds that all particles also have a wave nature (and vice
versa).[1] This phenomenon has been verified not only for elementary particles, but also for compound
particles like atoms and even molecules. For macroscopic particles, because of their extremely short
wavelengths, wave properties usually cannot be detected.[2] Wave–particle duality is an ongoing
conundrum in modern physics. Most physicists accept wave-particle duality as the best explanation for
a broad range of observed phenomena; however, it is not without controversy.
Philosophical criticism
The consequences of relativity, such as the change of ordinary concepts of space and time, as well as
the introduction of non-Euclidean geometry in general relativity, were criticized by some
philosophers of different philosophical schools. It was characteristic for many philosophical critics
that they had insufficient knowledge of the mathematical and formal basis of relativity, which lead
to the criticisms often missing the heart of the matter. For example, relativity was misinterpreted as
some form of relativism. However, this is misleading as it was emphasized by Einstein or Planck. On
one hand it's true that space and time became relative, and the inertial frames of reference are
handled on equal footing. On the other hand the theory makes natural laws invariant - examples are
the constancy of the speed of light, or the covariance of Maxwell's equations. Consequently, Felix
Klein (1910) called it the "invariant theory of the Lorentz group" instead of relativity theory, and
Einstein (who reportedly used expressions like "absolute theory") sympathized with this expression
as well.
Critical responses to relativity (in German speaking countries) were also expressed by proponents of
Neo-Kantianism (Paul Natorp, Bruno Bauch, etc.), and Phenomenology (Oskar Becker, Moritz Geiger
etc.). While some of them only rejected the philosophical consequences, others rejected also the
physical consequences of the theory. Einstein was criticized for violating Immanuel Kant's categoric
scheme, i.e., it was claimed that space-time curvature caused by matter and energy is impossible,
since matter and energy already require the concepts of space and time. Also the threedimensionality
of space, Euclidean geometry, and the existence of absolute simultaneity was claimed
to be necessary for the understanding of the world - none of them can possibly be altered by
empirical findings. However, Hentschel (1990) and others criticized these arguments as "Strategies of
Immunization". By moving all those concepts into a metaphysical area, any form of criticism of
Kantianism would be prevented. Additionally, he argued that also Kant's philosophy is the product of
his time, i.e. Kant used Newton's theories as the basis of many of his philosophical thoughts.
Therefore, other Kantians like Ernst Cassirer or Hans Reichenbach (1920), tried to modify Kant's
philosophy. Subsequently, Reichenbach rejected Kantianism at all and became a proponent of logical
positivism.
Based on Henri Poincaré's conventionalism, philosophers such as Pierre Duhem (1914) or Hugo
Dingler (1920) argued that the classical concepts of space, time, and geometry were, and will always
be, the most convenient expressions in natural science, therefore the concepts of relativity cannot be
correct. This was criticized by proponents of logical positivism such as Moritz Schlick, Rudolf Carnap,
or Reichenbach. They argued that Poincaré's conventionalism could be modified, as to bring it into
accord with relativity. Although it is true that the basic assumptions of Newtonian mechanics are
simpler, it can only be brought into accord with modern experiments by inventing auxiliary
hypotheses. On the other hand, relativity doesn't need such hypotheses, thus from a conceptual
viewpoint, relativity is in fact simpler than Newtonian mechanics.
Some proponents of Philosophy of Life, Vitalism, Critical realism (in German speaking countries)
argued that there is a fundamental difference between physical, biological and psychological
phenomena. For example, Henri Bergson (1921), who otherwise was a proponent of special relativity,
argued that time dilation cannot be applied to biological organisms, therefore he denied the
relativistic solution of the twin paradox. However, those claims were rejected by Paul Langevin,
André Metz and others. Biological organisms consist of physical processes, so there is no reason to
assume that they are not subject to relativistic effects like time dilation.
Based on the philosophy of Fictionalism, the philosopher Oskar Kraus (1921) and others claimed that
the foundations of relativity were only fictitious and even self-contradictory. Examples were the
constancy of the speed of light, time dilation, length contraction. These effects appear to be
mathematically consistent as a whole, but in reality they allegedly are not true. Yet, this view was
immediately rejected. The foundations of relativity (such as the equivalence principle or the relativity
principle) are not fictitious, but based on experimental results. Also, effects like constancy of the
speed of light and relativity of simultaneity are not contradictory, but complementary to one
another.
Academic criticism
Some academic scientists, especially experimental physicists such as the Nobel laureates Philipp
Lenard and Johannes Stark, as well as Ernst Gehrcke, Stjepan Mohorovičić, Rudolf Tomaschek and
others criticized the increasing mathematization of modern physics, especially in the form of
relativity theory and quantum mechanics. It was seen as a tendency to abstract theory building,
connected with the loss of "common sense". In fact, relativity was the first theory, in which the
inadequacy of the "illustrative" classical physics was clearly demonstrated. The critics ignored these
developments and tried to revitalize older theories, such as aether drag models or emission theories
(see "Alternative Theories"). However, those qualitative models were never sufficiently advanced to
compete with the success of the precise experimental predictions and explanatory powers of the
modern theories. Additionally, there was also a great rivalry between experimental and theoretical
physicists, as regards the professorial activities and the occupation of chairs at German universities.
The opinions clashed at the "Bad Nauheim debate" in 1920 between Einstein and Lenard, which
attracted much attention in the public
In the "Bad Nauheim Debate" (1920) between Einstein and Philipp Lenard, the latter stated the
following objections: He criticized the lack of "illustrativeness" of relativity, a condition that allegedly
can only be met by an aether theory. Einstein responded that the content of "illustrativeness" or
"common sense" has changed in time, so it cannot be used as a criterion for the validity of a theory.
Lenard also argued, that Einstein reintroduced the aether in general relativity. This was refuted by
Hermann Weyl - although Einstein used that expression in 1920, he simply referred to the fact that in
general relativity, space possesses properties that influences matter and vice versa. However, no
"substance" with a state motion (as the aether in the older sense) exists in general relativity. Lenard
also argued, that general relativity admits of the existence of superluminal velocities. For example, in
a reference frame in which the Earth is at rest, the distant points of the whole universe are rotating
around Earth with superluminal velocities. However, as been pointed out by Weyl, it's not possible to
handle a rotating extended system as a rigid body (neither in special nor in general relativity) - so the
signal velocity of an object never exceeds the speed of light. Another issue (that was raised by both
Lenard and Gustav Mie) concerns the existence of "fictitious" gravitational fields, which were
introduced by Einstein within accelerated frames to guarantee their equivalence to frames in which
gravitational fields exist. Lenard and Mie argued, that only forces can exist that are proportional to
real existing masses, while the gravitational field in an accelerating frame of reference has no
physical meaning, i.e. the relativity principle can only be valid for mass proportional forces. Einstein
responded, that based on Mach's principle one can think of these gravitational fields as induced by
the distant masses. In this respect the criticism of Lenard and Mie was partly justified - Mach's
principle is not fulfilled in general relativity, as already mentioned above.
Physics in the past formulated at least part of the truth about the physical phenomena.
Some ideas, even if they were doubtful and rejectable, are still valid today:
1. Electron radiates electromagnetic waves if and only if moves with acceleration from the higher
Bohr´s energy levels to a lower. In atom, as a source of electromagnetic waves , them it then , when
it moves from afnucleum to perinucleum along the ellipse . If the electron moves with decelerated
motion, when it absorbs energy , while moving from a lower to a higher energy level, in the direction
from perinukleum to afnucleum along the ellipse with of very small eccentricity . Eccentricity of the
ellipse is maximal, when electron radiates head of series. Minimal, almost zero, eccentricity
corresponds to edge series.
Faulty arguments leveled against classical physics - the electron is moving with acceleration along of
a spiral towards the nucleus - we will find in Beiser[19] 5.7 The failure of classical physics , p.120 ,
Fig.5.12 : " Electron in an atom should be according to classical physics, rapidly converge to the
nucleus , because as a result of its acceleration radiates energy."
Because the electron flashes 4,56794e+14 times per second, i.e. emits energy 4,56794e+14 times
per second and absorbs energy 4,56794 e+14 times per second (for spectral line Hα). Electron
creates in the transmission medium, electromagnetic wave 4,56794 e+14 times per second and
absorbs energy 4,56794e+14 times per second (for spectral line Hα) - Beiser´s argument is
unfounded.
Electron is no oscillator. Atóm resembles to the solar system with the same "planets" (electrons)
and different distances from the nucleus. Electron in an atom not to skip, but moves continuously
with great speed, which increases from the value 0,002717146 c (in afnucleum) to 0,0027212042 c
(in perinucleum). Then decreases from the value 0,0027212042 c (in perinucleum) to 0,002717146 c
(in afnucleum) etc.
Changing the speed of the electron is repeated 9,1358772e+14 times per sec. (spectral lines Hα).
2. The quantum harmonic oscillator as the quantum-mechanical analog of the classical Planck´s
harmonic oscillator we can replace with circulating electron along ellipse around the nucleus of an
atom between two Bohr´s energy levels, while electron moving alternately with acceleration and
deceleration. Linear harmonic oscillator is only the projection of the real motion of the electrons
along the ellipse in the plane perpendicular to the plane of the ellipse.
Linear harmonic oscillator is only the projection of the real motion of the electrons along the ellipse
in the plane perpendicular to the plane of the ellipse.
Or more accurately, is only the projection - of rotating ellipses ( Sommerlfeld's ellipses around
perinucleus) - in a plane perpendicular to the plane of the ellipses.
In quantum mechanics are used so imprecise and imperfect expressions of motion of electrons
around the nucleus.
Definition of particle
The main characteristic of the particle :
Particle as a source exists if and only if repeatedly speeds up and slows down its movement in source
along ellipse (when blinks).
Particle as a source, creates in the transmission medium, electromagnetic wave, that spreads in all
directions with the velocity c / n,
regardless of the source movement, where n is the refractive index of the transmission medium.
In other words, particle, which is the source, can not become the transmission medium and remain
in it.
Particle that is the source, remain in the source.
Definition of waves
The main characteristic of the waves is the energy transfer through a transmission medium.
And no transfer of the substance (= of real particles) from the source to the transmission medium.
Wave exists if and only if there is not a source.
In the case of electromagnetic wav
28[3]
electric field intensity E and the ma
are both associated with the intens
= Estill
The force acting on the moving ele
whereby
Neutron, β electron , gamma rays
Gamma rays have frequencies abo
keV and wavelength less than 1
radioactive decay commonly have
MeV. The upper limit for such ener
are sometimes classed as x-rays if t
β electron is emitted from the neu
etic waves, see 2.1.3 The electromagnetic field. Maswel
magnetic induction B
e intensity of a moving charge
still + B where
oving electric charge is
ma ncies above 10 exahertz (1019 Hz), and therefore have e
10 picometers, often smaller than an atom. G
nly energies of a few hundred keV, and almost al
uch energies is about 20 MeV, and there is effectively no
their frequencies are lower than 1019 Hz).
neutron
Maswell's equations, p.
energies above 100
Gamma rays from
lmost always less than 10
ctively lower limit (they
The Feynman diagram for beta decay of a neutron into a proton , electron , and electron antineutrino
via an intermediate heavy W boson.
In the "stable" neutron, electron orbits around the center-of-mass with speed greater than
0,999994c.
If will start beta decay of a neutron, β electron has kinetical energy in direction of motion 80 398
MeV ( it is W- boson), proton is moving at a speed 0,023337c, and radiates γ ray.
Planck : 80 398 MeV = h*f , f is frequency circulation electron around center of mass in
neutron in center- of- mass coordinate system
Neutron ( = Proton and an electron orbiting a common center of mass ) Beta decay is mediated by
the weak force.
2. Theory
2.1. Form of Intensity of the Moving Charge Electric and Magnetic Field
2.1.1 Intensity of the Moving Charge Electric Field
Let us have a system of coordinates (x, y, z) connected with the medium causing propagation
of light. Let the electric field intensity in this medium propagate at speed c in all directions. It
is known from Coulomb's law that intensity of the still standing charge in relation to the
system of coordinates (x, y, z) decreases with the square of distance from that charge then
represented by hyperboles symmetrical to the charge, illustrated in section as follows:
Fig. 2.1. The intensity of the stillstanding charge
r - distance of the hyperbole point from the beginning
Charge q is situated at level yz and in the distance of yq from the beginning in the direction of
axis y.
Let us now examine what would happen with the form of curves representing the intensity of
the electric field, if charge q will move in a uniform straight line motion in the direction of the
axis y at a constant speed v. Let's thus join firmly the system of coordinates (x', y', z') with the
charge q, see . Fig. 2.2.
r - distance of the hyperbole point from the beginning
Fig. 2.2. The system of coordinates (x', y', z')
Distance r' is measured in direction of axis y' from the charge (or from the beginning O'
respectively), while it is valid
r'=r-vt (2.1)
At the moment t0=0 both systems become identical.
When , the charge finding itself at the distance of would emit intensity
propagating at speed c, which at the moment of t would come to point r in time of
(2.2)
thus
(2.3)
The index id means that is the case of propagation of the electric field intensity in direction of
the charge motion.
Let the be the distance between the position of the charge at the moment of (i.e.
when the charge has emitted the intensity to point r) and position of the charge at the moment
t, when the intensity emitted "has reached" the point r.
At the time of the charge will cover the distance of
(2.4)
This is the distance at which the charge "outrun" the intensity propagated in direction of the
charge motion. Consequently the intensity of the moving charge in relation to the system of
coordinates (x, y, z) will change its form in the respective of various r: it will be deformed
(see Fig. 2.3 )
Fig. 2.3. The intensity of the moving charge in the direction of the motion
It is evident that with increasing distance ri (i = 1,2,3,...) the respective "retardation of
intensity" (ri) also increases, as can be seen in equation (2.4) . As the intensity of the
moving charge in the direction of the motion at point r' and moment t equals the
intensity of the stillstanding charge at point at the moment of intensity emittance
, then:
(2.5)
From the Coulomb's law:
(2.6)
(2.7)
r are distances of points of hyperbola from the beginning of the non-dashed system, r' are
distances of points of hyperbola from the beginning 0' in a dashed system, r, r' are variables
of the same function (represented by hyperbolas). In other words, there is distance r, that
numerically equals distance. Such distance r' numerically equals distance, both
being variables of the same function . For detail refer to (2.6) and (2.7). The issue
concerns the same Coulomb's law.
By substituing of (2.5) and (2.4) we get
(2.8)
Then by utilizing (2.3) , (2.6) and (2.7) we calculate
(2.9)
that is
(2.10)
Thus we managed to express the intensity of the moving charge in direction of motion by means of
the intensity of the stillstanding charge in the given point. Analogically we express the intensity of the
electric field of the moving charge against the direction of motion (indexes ad), see Fig. 2.4
Fig. 2.4. The distance
The charge moving at the speed of v parallel to the axis y is situated (at the moment t) in the
distance of v.t from the axis z.
At the moment the charge, situated in the distance of will emit the
intensity to the point r.
This intensity will reach at the moment t just the point r in time of
(2.11)
from where
(2.12)
is the distance between the position of the charge at the moment i.e. when the charge
emitted the intensity to the point r and the position of the charge at the moment t, when the
emitted intensity "has reached" the point r.
The charge will cover the distance
(2.13)
at time , while r'<0 .="" and="" br="">This is the distance by which the intensity that propagates in the direction opposite to the
movement of the charge, is shifted against the intensity of the stillstanding charge in the
direction away from the charge, see Fig. 2.5.
Analogically to equations (2.5) - (2.10) we achieve the following:
(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)
The form of intensity for v=0.5c see Fig. 2.6.
Fig. 2.5. The intensity of the electric field by means of the moving charge against the
direction of motion Ead
Fig. 2.6. The form of intensity for v = 0.5c
The equations (2.10) and (2.19) are placeable by common equation
(2.20)
where is the angle between the direction of the charge motion (the speed v) and the direction of
propagation of intensity.
At level xy, the section of the intensity hyperboloid is, for the stillstanding charge, the circle
with its centre in the charge, for the moving charge it is the case of all types of Pascal's screw
s2.10. tocks with the charge at the beginning of the coordinates, see Fig. 2.7, Fig. 2.8,
Fig.2.9, and Fig. 2.10.
Fig. 2.7, 2.8. At level (x, y) section of the "hyperoloid" of the intensity for various speeds of
the moving charge have a shape of all types of Pascal's screw stocks with charge at the
beginning of the coordinates
Fig. 2.9, 2.10. At level (x, y) section of the "hyperoloid" of the intensity for various speeds of
the moving charge have a shape of all types of Pascal's screw stocks with charge at the
beginning of the coordinates
2.1.2 Kaufmann's Experiment
In the period from 1901 to 1906, Kaufmann wrote a number of works, the most coherent of
them seems to be concerning experimental evidence of "the changeability of mass with
speed". We shall revalue his experiment and will prove - on the basis of the theory given in
the preceeding section 2.1.2 - the subject is the influence of intensity of the moving charge on
the magnitude of the deviation of influence of intensity of the moving charge on the
magnitude of the deviation of beta-rays in the crossed electromagnetic field, and not the
changeability of mass with speed.
The attempt is done through a short correct description for sake of qualitative examination of
the experiment, utilising some of the measured and calculated values given by Kaufmann
in [8]
Beta-rays from Ra source, moving at speed are simultaneously deflected in
the crossed electric and magnetic field, see diagram in Fig. 2.11.
Fig. 2.11. Kaufmann's Experiment - diagram
The device is situated in the evacuated glass vessel. The rays go out from the Ra source, pass
the electric screen and create a small spot on a photographic plate.
When the electric field will be created on the condenser plates PP', the additional stripe in the
y- direction will arise apart from the non-diverting middle spot close to 0 (consisting of
gamma and little diverting ).
When the entire device is situated between the poles of the U-shaped magnet (with the electric
field switched off), the stripe will arise in the direction of the axis z.
While at the magnetic field we have the movement of electrons along circles expressed in the
following equations
(2.21*)
were
in the electric field we first have the movement along straight line
(2.22*)
- electrons are emitted from the source under the angles then they move between
the condenser plates along the parabola
(2.23*)
then again along the straight line
(2.24*)
The points of intersection of straight lines (2.24*) with the level of the photographic spot
will give us the deviation y.
The values E used in the calculations
(2.25*)
would give, after substitued into (2.23*) and (2.24*) the deviations
which are almost four times bigger as those acquired (yb) by
Kaufmann.
Considering out theory on and the values (2.25*) be multiplied by we achieve
deviations identical with the results of Kaufmann's experiment, see table 1. Thus the theory
under 2.1. concerning the intensity of the moving charge of the electric field may be regarded
experimentally confirmed.
Table 1.
1631 V 2603 V 3250 V
yb[cm]
0.1236
0.1119
0.1493
0.1302
0.1664
0.1616
y[cm] 0.23626 0.3873 0.4985
yT[cm] 0.0629 0.09947 0.12557
yT-theoretical value (our new theory):
[8] KAUFMANN, W.: Annalen der Physik, Vierte Folge, Band 19, Leipzig 1906, Verlag von
Johann Ambrosius Barth, page 487-552
Kinetic energy of electron (proton) Tkin id =mc2 [ln |1-v/c|+ (v/c) / (1-v/c) ] in direction of motion
of electron ( proton), where v is velocity of electron (proton) and m is mass of electron (proton)[2].
It's own kinetic energy of the electron (proton).
Kinetic energy of electron (proton) Tkin ad = mc2 [ln |1+v/c|- (v/c) / (1+v/c) ] against direction of
motion of electron (proton), where v is velocity of electron (proton) and m is mass of electron
(proton. Represents the wave energy, which creates electron (proton) in transmision medium.
Electron (proton) as a source exists if and only if repeatedly speeds up and slows down its
movement in source along ellipse (when blinks).
Electron (proton) as a source, creates in the transmission medium, electromagnetic wave, that
spreads in all directions with the velocity c / n,
regardless of the source movement, where n is the refractive index of the transmission medium.
In other words, electron (proton) , which is the source, can not be a transmission medium and
remain in it.
The main characteristic of the waves is the energy transfer through a transmission medium.
And no transfer of the substance (= of real electron,proton ) from the source to the transmission
medium.
Wave exists if and only if there is not a source.
In the case of electromagnetic waves, see
2.1.3 The electromagnetic field. Maswell's equations, p. 28[2] electric field intensity E and the
magnetic induction B are both associated with the intensity of a moving charge
= Estill + B where
The force acting on the moving electric charge is
whereby
What is the relationship Lorentz derived from the asymmetrical form of the intensity of the moving
charge. To derive it we do not need Lorentz's transformations equations, that is we do not need
SPACE-TIME.
We do not need local time, or covariant equations or physical simultaneity definition or invariant
interval. In other words, in physics we do not need Einstein's theory of relativity.
From the asymmetrical form of the intensity of the moving charge we can derive Gauss law,
Faraday's law and derive the 4th Maxwell's equation, by a Maxwell thinks up and not derived !
The electromagnetic field. Maswell's equations. (Cited from [2] pages 27 – 30 ):
„Let us take the equation (2.20) in the vector form:
(2.21)
The force acting on the moving electric charge is
(2.22)
whereby
It is known, in line with the classical theory, that a magnetic field is created by the moving
charges and electric currents. The result is that the moving charge creates its own magnetic
field of induction Bq. It continues in this field in motion. According to Lorentz, the force
acting on the moving charge in the electromagnetic field at speed v in the magnetic field of
induction B and in the electric field of the following intensity E it is valid:
(2.23)
Let us compare the equations (2.22) and (2.23) .
Intensity E of the electric field according to Lorentz equals to our intensity Estill.
As the forces acting on the acting on the moving charge are equal, it must be valid
(2.24)
With regard to the fact that both the direction Estill and the direction of the vector are identical,
for the absolute values it is possible to write
i.e.
(2.25)
This means that the charge moving at speed v creates around itself its own magnetic field of the
following induction:
while the vectorial equation is in force
(2.26)
Where from
(2.27)
The intensity of moving charge comprises in itself also the magnetic field induction B created by the
charge moving at speed v.
Based on (2.27) Maxwell's equations which are always valid (not only in static) acquires
form:
1.
(...Gauss law)
(2.28)
because (2.29)
2. ....... there are no magnetic charges
(2.30)
3.
becose in the statics
further
We use (2.29) and except of constant it is valid
(2.31)
Then
(...Faraday's law) (2.32)
4. Amper's law in statics
(2.33)
Total magnetic field
(2.34)
where
(2.35)
Let's calculate
For own magnetic field BQ of the charge moving at speed v it is possible to write:
(2.36)
because , ,
and because
(2.37)
i.e.
(2.38)
what represents the 4th Maxwell's equation“.
Consequence : Form of Intensity of the Moving Charge Electric Field is asymmetrical.
2.2 The non-linear form of the interference field
Until recently it has been assumed that the shape of the interference field is "linear". The
corresponding fraction of the shift of the interference fringes is directly proportional to the
corresponding part of the wave length. If, for example, the distance of two interference fringes
is divided into 100 divisions and the shift of 23 divisions is detected, we thus assume that the
change occured over a length of .
In other words, the shift of the fringes is considered to be equivalent to the change of length.
This view corresponds to the linear form of the interference field, see Fig. 2.12.
Fig. 2.12. The "linear" form of the interference field
What justifies us our assumption that the interference field is linear? Is the assumption
correct?
In physics we are used to picture the experimental results through curves which are not "sawtooth"
as is the case with the linear interference field, but which have a nicely rounded shape.
Let us replace the "saw-tooth" linear interference field by some rounded non-linear
interference field.
Let us choose sinusoides or semi-circles instead of the sawtooth abscissas. In case of semicircles
according to Fig. 2.13 we get:
Fig. 2.13. The non-linear form of the interference field
in the 3rd quadrant: , as
(2.46)
In the shifted 1st quadrant
(2.47)
2.2.1. Fizeau's Experiment
Let us revalue the results of the Fizeau's experiment from the aspect of non-linear interference
field. Fizeau [6] used light of wave length , two tubes, each L=1.4875 m long
in which water flowed at speed u=7.059 m/s. As the experiment is generally known, we shall
not describe it in detail. We shall only reassess its results.
The relation corresponds to equal values of the shift of fringe supposing the
interference field to be linear. In reality the experimentally observed values from the interval
ranged from 0.167 to 0.307 in the average of . That was explained by Fresnel's
theory of partial drag of ether with the drag coefficient . Should we consider the non-linear
form of the interference field, then according to (2.46) we get
which is in line with the experimentally observed mean value . We do not need any
coefficient . Fizeau's experiment confirms also that the interference field has a non-linear
form.
2.2.2. Harres's Experiment
Harres [7] used two wavelengths of light
which were passing through ten firmly fastened prisms in a rotating apparatus at speed 400-
600 revolutions/min. According to [7], if the drag coefficient is not included
were , z - is the number of sideral time seconds required by the apparatus to
make 50 revolutions.
After the arrangement
(2.48)
(2.49)
The average value (tab. 1) after substitution in (2.48) gives
Substituing to (2.46) we get
According to the experiment is again in line with the theory of the non-linear
interference field. The comparison of Harres's experimental values that do not include the
drag coefficient with both linear and non-linear form of the interference field, as well as the
results of Fizeau's experiment, are shown in Fig. 2.14.-2.21.
Fig. 2.14.-2.21. The comparison of Harre's experimental values which do not comprise the
drag coefficient with both linear and non-linear form of the interference field, as well as the
results of Fizeau's experiment.
Fig. 2.14. Fizeau's experiment [6] p. 392
Fig. 2.15. [7] Tab. 1., 1. Reihe
Fig. 2.16. [7] Tab. 1., 2. Reihe
Fig. 2.17. [7] Tab. 1., 3. Reihe
Fig. 2.18. [7] Tab. 1., 4. Reihe
Fig. 2.19. [7] Tab. 2., 1. Reihe
Fig. 2.20. [7] Tab. 2., 2. Reihe
Fig. 2.21. [7] Tab. 2., 3. Reihe
This is simultaneously proves that the drag coefficient always equals one and the interference
field has a non-linear form. Consequently, the interference fields are identical only for the
shift of the interference fringes about 0 and/or 100 and 50 divisions.
Consequence : Form of the interference field is non-linear: (from [2] pages 34 – 39 ).
3. Calculation of the kinetic energy Tkin of a body moving at the velocity of v
For the sake of simplicity let us consider for instance the gravitational field of the Earth.
Analogically to (2.20) for the intensity of the gravitational field one could write:
(3.1)
Let us consider the physical processes in which kinetic energy is transformed into potential
one and potential energy is transformed into kinetic one. There is a state in which the potential
energy equals total energy of the body (while the kinetic energy equals zero) and the state in
which kinetic energy equals the total energy of the body (while the potential energy equals
zero). These extreme will help us to calculate the kinetic energy of body. For the potential
energy we have
(3.2)
By integrating and utilizing of the relation (3.1) we have
By substituting ,
we get
(3.3)
Solving by substitution
we get
(3.4)
while isn’t ,
For we have the kinetic energy in the direction of motion
(3.5)
For we have the kinetic energy against the direction of motion
(3.6)
If (i.e. v<utilizing the series
the equations (3.5) and (3.6)will be changed in the equation
complying with the Newton’s mechanics. In Table 2 the values of the kinetic energy are
, . The total energy according to Einstein .
Table 2. Calculation of the kinetic energy Tkin of a body moving at the velocity of v according to
Einstein and according to Vlcek
v/c
Vlcek ´s theory - kinetic
energy against direction of
motion as wave Tkin ad
=
mc2[ln |1+v/c|- (v/c)/(1+v/c)]
Vlcek ´s theory – kinetic
energy in direction of
motion as particle
Tkin id =
mc2[ln |1-v/c|+ (v/c)/(1-v/c)]
Vlcek ´s
theory
m = m0 =
const
( Tk ad + Tk id
)/2
Einstein ´s
theory
Tkin =
mc2 – m0
c2
0.1 0.00439 mc2 0.0057 mc2 0.0050 m c2 0.0050 m
c2
0.2 0.0156 mc2 0.0268 mc2 0.0212 m c2 0.0200 m
c2
0.3 0.0316 mc2 0.0719 mc2 0.0517 m c2 0.0480 m
c2
0.4 0.0508 mc2 0.1558 mc2 0.1033 m c2 0.0910 m
c2
0.5 0.0722 mc2 0.3068 mc2 0.1895 m c2 0.1550 m
c2
0.6 0.0950 mc2 0.5837 mc2 0.3393 m c2 0.2500 m
c2
0.7 0.1174 mc2 1.1293 mc2 0.6233 m c2 0.4010 m
c2
0.8 0.1434 mc2 2.3905 mc2 1.2669 m c2 0.6670 m
c2
0.9 0.1680 mc2 6.6974 mc2 3.4327 m c2 1.2930 m
c2
0.99 0.1906 mc2 94.3948 mc2 47.294 m c2 6.9200 m
c2
1.0 0.1931 mc2 infinite infinite infinite
Direct measurement of the speed in the experiments Kirchner[3], [4], Perry, Chaffee [5]
For v/c = 0.08-0.27 can not yet prove the validity of Vlcek's theory[2] or Einstein's theory[1].
Consequence.
The main differences between Einstein's theory [1] and the latest knowledge [2] are:
1.Form of Intensity of the Moving Charge Electric Field is asymmetrical,
2. Form of the interference field is non-linear,
3. Kinetic energy of a charge moving at the velocity of v has two different values:
Kinetic energy of charge
Tkin id =mc2 [ln |1-v/c|+ (v/c) / (1-v/c) ] in direction of motion of charge
where v is velocity of charge.
Kinetic energy of charge
Tkin ad = mc2 [ln |1+v/c|- (v/c) / (1+v/c) ] against direction of motion of charge
where v is velocity of charge.
These are the main differences between Einstein's theory and the latest knowledge.
For example:
Lambda hyperon 2286.46 MeV in direction of motion and pion π0 : 134.9766(6) MeV against
direction of motion are in the proton at speed of proton v = 0,8022863362c
hyperon Chi c (2645)+ 2646.6MeV in direction of motion and pion π0 : 139.57018(35) MeV against
direction of motion are in the proton at speed of proton v = 0,819183027c
hyperon 6,165 GeV in direction of motion and meson K- 493.7 MeV against direction of motion are in
the alpha particle at speed of alpha particle v = 0,7533c
Electron in direction of motion, electron neutrino against direction of motion are in the electron at
speed of electron :
from v= 0.1c to v= 0.9 c
Muon in direction of motion, muon neutrino against direction of motion are in the electron at speed
of electron : v = 0.995308032046c
Tauon in direction of motion, tauon neutrino against direction of motion are in the electron at speed
of electron : v = 0.99971316674c
W + - boson in direction of motion and neutrino against direction of motion are in the electron at
speed of electron : v = 0.99999364465781184c
Z boson in direction of motion and neutrino against direction of motion are in the electron at speed
of electron : v = 0.999994396590953c
See you please Decay modes in
K Nakamura et al (Particle Data Group) 2010 J. Phys. G: Nucl. Part. Phys. 37 075021
http://www.trendsinphysics.info/data/Great_table_of_elementary_particles.pdf
Shortened great table of elementary particles. http://www.trendsinphysics.info/
Consider the experiments at CERN and particle decay mode see [9] , [ 10] and [11].
Table 3. Kinetic energy in direction of motion and Kinetic energy against direction of motion
v/c
Front of electron, proton, neutron, deuteron,
He-3, α-particle
Behind of electron, proton, neutron, deuteron,
He-3, α-particle
Decay modes
v/c
Kinetic energy in direction of
motion as particle
Tkin id = mc2[ln |1-v/c|+ (v/c)/(1-
v/c)]
Kinetic energy against direction of
motion as wave
Tkin ad = mc2[ln |1+v/c|- (v/c)/(1+v/c)]
Decay
modes
Electron
0.0027171
It is v/c in
the
direction
of motion
(id)
3.704855771252357587814e-6
1.8931773275045679448456131 eV
Lambdaid (v/c=0,0027171) = hc/Ek,id =
=654.900051928391151 nm
4.577682611525892171951e+14 Hz
1.8931773275 eV
Electron
0.0027212
It is v/c
against the
direction
of motion
(ad)
3.6890835634754294761e-6
1.885117746 eV
Lambdaad (v/c= 0,0027212)=hc/ Ek,ad =
= 657.69999384 nm
Proton
0.075
Down quark / p:
0.0031195396
Down quark: 2.92697 MeV
Up quark / p:
0.0025532197
Up quark: 2.4MeV
Proton
0.081622
Down quark / p:
0.00373026153466
Down quark: 3.5 MeV
Up quark / p:
0.00299917404444
Up quark: 2.814 MeV
Proton
0.08878
Down quark / p:
0.004458901351
Down quark: 4.18366 MeV
Up quark / p:
0.0035171
Up quark: 3.3 MeV
Proton
0.094686
Down quark / p:
0.0051156918494
Down quark: 4.8MeV
Up quark / p:
0.003971527848360625619647345216
8
Up quark: 3.72637 MeV
Neutron
0.584840845
6
2020497175
K0/n 0 : 0.5296214734
K0 497.614 MeV
γ+γ/n0:
0.09146217425
85.934692341921 MeV
f = 2.0778917e+22 Hz
gamma rays γ + γ
π± + e∓ + νe
or
π± + μ∓ + νμ
or
π0 + π0 + π0
or
π+ + π0 + π−
Neutron
0.59983529
η/n0: : 0.58309194
Eta meson η 547,853 MeV
γ /n0 :
0.0949650261957629
89.22585075 MeV
f=2.1574715663e+22Hz…gamma rays
 + 
γ + γ or
π0 + π0 + π0
or
π+ + π0 + π−
Neutron
0.6849950
294204886
η(958)/n0: : 1,01938622
Eta prime meson η(958)
957.78 MeV
γ + γ /n0 :
0.115236174677
108.27192004399 MeV
f = 2.61800349e+22Hz gamma rays  + 
π+ + π− + η
or
(ρ0 + γ) / (π+
+ π− + γ) or
π0 + π0 + η
Proton
0,713
c quark / p:
1.23604749426877325552441352943
c quark: 1160 MeV
1.16–1.34 GeV
s quark / p:
0.122017381046594648248703501967
2
s quark=114.485493763640 MeV
Proton
0.72585
c quark / p:
1.35355827716301434378382094041
c quark: 1270 MeV
1.16–1.34 GeV
s quark / p:
0.125144314084389679454468504976
6
s quark: 117.41941 MeV
Proton
0.73333
c quark / p:
1.42815727326988258696780184681
c quark: 1340 MeV
1.16–1.34 GeV
s quark / p:
0.126968600233165927497518619193
0
s quark= 119.1311MeV
Alpha
particle
0.74079510
8978806110
189
Λ0b5620,2/α:
1.507815448036779679 45
bottom Lambda Λ0b 5620.2MeV
/α:
0.128792111445433901352418448281
1
480.0570425830862480785 MeV
See Λ0b
decay modes
Alpha
particle
0.7533042
89775682
Ω−b /α:
1.653977124861525696970279
bottom Omega Ω−b 6165 MeV
K+ /α:
0.131853826242866291292162163866
8
491.469214760347149777 MeV/c2
2.20778523965285 MeV/c2 less than
K+ mezón 493.677 MeV/c2
(Ω− +J/ψ
seen)
Alpha
particle
K+ 493,677/α:
0.132446141970785886546924052729
3
μ+ + νμ or
π+ + π0
or
π0 + e+ + νe
Alpha particle
0.76
1,73955031102652091827762535859 0.1334956272318785955130709726109
Neutron
0.81036682451
Σ+c//n0 :
2.610675166291363936
2452.9 MeV/c2
(π0/n0: 0.1436585501770159947294269 )
( π+ /n0 : 0.1485475979299 )
0.1459037308768114306373953569888
137.08609408352 MeV/c2 pion π0
Λ+c + π0
Proton
0.81052636568
Σ+c/ p+ :
2.614273770499822
2452,9 MeV
0.145943178944838051921943801563
136.934405138965 MeV pion π0
Λ+c + π0
Neutron
0.82109117964
Ω0c //n0 :
2.868560360466584
Charmed Ω0c 2695.2 MeV
π+ /n0 :
0.1485571948556745469313451
139.57919697 MeV/c2 pion π +,π –
π - = 139.57018 +- 0.00035 MeV
See Ω0c decay mo
Proton
0.8212451756
Ω0c / p+ :
2.87251443916512034719619
2,87251449930788853
2.695.2±1.7 MeV
6.9±1.2×10−14 s
Proton
v/c= 0.82188
π+ / p+ :
0,1487523587588583023819511724
139.5701751 MeV
139.57 = π- +
See Ω0c decay mo
Proton
0.9928305
 /p:
133.54335827671029218747501724
125300 MeV
0.191354813279005033975005068774
179.542872167240022072 MeV
Proton
0.994637
Top quark /p:
180.2249215745799592957129
Top quark: 169 100MeV
/p:
0.19180643378644112290601
179.9666087792708 MeV
Proton
0,994766
Top quark /p:
184.8078143171624183434454
Top quark: 173 400MeV
0.1918386835588782289730044404
179.996867838181577 MeV
Electron
0.99530803204
Muon/e:
206.768282237446856567
Muon 105.658366838 MeV =
= kinetic energy of elektron in direction
motion of electron
Muon neutrino /e:
0.1919741907309481 Muon neutrino
98.0986022063665 keV = kinetic energy of
elektron against direction of motion of ele
< 170 keV
Electron
0.99642558425
54502
π-/e- :
273.13204749023558573115849192
139.5701835 MeV/c2
pi minus π- 139.57 MeV
/e- :
0.19225357757678994895712344707072
98.2413720670523951317 keV/c2 =
energy of elektron against direction o
of electron < 170 keV Muon neutrino 
μ+ + νμ
Electron Tauon/e: neutrino /e:
0.99971316674 3477.18894397593998486635332040
Tauon 1776.84±0.17 MeV = kinetic energ
elektron in direction of motion of electro
0.1930754722354370554950579271201 Mu
neutrino 98,0988323306154745516 keV
energy of elektron against direction of motion
electron < 170 keV
Tauon neutrino ντ < 15.5 MeV
Electron
0.99999364465
W+ BOSON/e:
157334.973580134140866955192245
W+ BOSON = 80 398±0,25 MeV
neutrino/e:
0.1931455917243982747650628195328 Mu
neutrino
98.6971868371602593582305116066 keV
keV
Tauon neutrino ντ < 15.5 MeV
Electron
0.99999439659
BOSON Z/e:
178449.695724220005270274923361
BOSON Z = 91 187.6 MeV = 91. 1876 GeV
neutrino/e:
0.19314577970768356308259999253 M
neutrino
98,69728289641413473723244731 keV < 1
keV
Tauon neutrino ντ < 15.5 MeV
Consider the experiments at CERN and particle decay modes see [9] , [ 10] and [11].
Einstein's theory of relativity can not explain ...
1. Movement principles of the fast-spinning pulsars,
2. Nuclear Fusion ,
3. Wave - Particle Duality as Kinetic Energy Against and In Direction of Motion
4. the 4th Maxwell's equation,
5. Lorentz equals without the help of Space-Time,
6.Confinement of quarks
7. Great Table of Elementary Particles
8. Spectral line Hα
9. Neutrino Oscillations
10. Form of the interference field must be non-linear.
11.Form of Intensity of the Moving Charge Electric Field must be asymmetrical.
12.Kinetic energy of a charge moving at the velocity of v has two different values:
Kinetic energy against direction of motion as wave
Tkin ad = mc2[ln |1+v/c|- (v/c)/(1+v/c)]
Kinetic energy in direction of motion as particle
Tkin id = mc2[ln|1-v/c|+ (v/c)/(1-v/c)]
13. Yukawa potential
References
[1] A. Einstein : Sobranie naucnych trudov v cetyrech tomach pod redakciej I. E.TAMMA, Ja. A.
SMORODINSKOGO, B. G. KUZNECOVA, Izdatelstvo "Nauka", Moskva 1966
[2] L. Vlcek, : New Trends in Physics, Slovak Academic Press, Bratislava 1996, ISBN 80-85665-64-6.
Presentation on European Phys. Soc. 10th Gen. Conf. – Trends in Physics ( EPS 10) Sevilla , E 9 -13
September 1996, http://www.trendsinphysics.info/
[3] F. Kirchner : Über die Bestimmung der spezifischen Ladung des Elektrons aus
Geschwindigkeitsmessungen, Ann. d. Physik [5] 8, 975 (1931)
[4] F. Kirchner : Zur Bestimmung der spezifischen Ladung des Elektrons aus
Geschwindigkeitsmessungen , Ann. d. Physik [5] 12, 503 (1932)
[5] Ch. T. Perry, E.L. Chaffee : A DETERMINATION OF e/m FOR AN ELECTRON BY DIRECT
MEASUREMENT OF THE VELOCITY OF CATHODE RAYS , Phys.Rev.36,904 (1930)
[6] FIZEAU, M. H.: Sur les hypothéses relatives a l’éther lumineux. Ann. de Chim. et de Phys., 3e série,
T. LVII. (Décembre 1859) Présente á l’Academie des Sciences dans sa séance du 29 septembre 1851.
[7] KNOPF, O.: Annalen der Physik, Vierte folge, Band 62, 1920 :"Die Versuche von F. Harress uber die
Geschwindigkeit des Lichtes in bewegten Korpern, von O. Knopf. p. 391 – 447
[8] KAUFMANN, W.: Annalen der Physik, Vierte Folge, Band 19, Leipzig, 1906 Verlag von Johann
Ambrosius Barth p. 487-552
[9] Great table of elementary particles. http://www.trendsinphysics.info/
[10] K Nakamura et al (Particle Data Group) 2010 J. Phys. G: Nucl. Part. Phys. 37 075021
[11] Particles, waves and trends in physics http://www.trendsinphysics.info/
12] Walter Greiner (2001). Quantum Mechanics: An Introduction. Springer. ISBN 3-540-67458-6.
[13] R. Eisberg and R. Resnick (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei, and
Particles (2nd ed.). John Wiley & Sons. pp. 59–60. ISBN 047187373X.
[14] Paul Arthur Schilpp, ed, Albert Einstein: Philosopher-Scientist , Open Court (1949), ISBN 0-87548-
131-7 , p 51.
[15] ^ (Buchanan pp. 29–31)
[ 16 ] E. A. Ershov-Pavlov, L. V. Chvyaleva, N. I. Chubrik: Taking the wings of spectral lines into
account when measuring their intensities, Journal of Applied Spectroscopy, September 1985,
Volume 43, Issue 3, pp 960-965
Model Pembelajaran Learning Cycle
Oleh : M. Jainuri, M.Pd

A. Model Pembelajaran.
Menurut Trianto (2010:52), “Model pembelajaran adalah suatu
perencanaan atau suatu pola yang digunakan sebagai pedoman dalam
merencanakan pembelajaran di kelas atau pembelajaran dalam tutorial”. Model
pembelajaran mengacu pada pendekatan pembelajaran yang akan digunakan,
termasuk di dalamnya tujuan-tujuan pengajaran, tahap-tahap dalam kegiatan
pembelajaran, lingkungan pembelajaran, dan pengelolaan kelas. Hal ini sesuai
dengan pendapat Joyce (dalam Trianto, 2010:51) bahwa “Each model guides us as
we design instruction to help students achieve various objectives”. Maksud
kutipan tersebut adalah bahwa setiap model mengarahkan kita dalam merancang
pembelajaran untuk membantu peserta didik mencapai tujuan pembelajaran.
Sementara, Arends (dalam Suprijono, 2011:45) menyatakan model
pembelajaran mengacu pada pendekatan yang akan digunakan, termasuk di
dalamnya tujuan-tujuan pembelajaran, tahap-tahap dalam kegiatan pembelajaran,
lingkungan pembelajaran dan pengelolaan kelas. Joyce dan Weil (dalam Rusman,
2011:133) berpendapat bahwa ”Model pembelajaran adalah suatu rencana atau
pola yang dapat digunakan untuk membentuk kurikulum (rencana pembelajaran
jangka panjang), merancang bahan-bahan pembelajaran, dan membimbing
pembelajaran di kelas atau yang lain”.
Pada penelitian ini, yang dimaksud model pembelajaran adalah kerangka
konseptual yang menggambarkan prosedur sistematis dalam mengorganisasikan
pengalaman belajar untuk mencapai tujuan belajar. Fungsi model pembelajaran
adalah sebagai pedoman bagi perancang pengajaran dan para dosen dalam
melaksanakan pembelajaran. Pemilihan model pembelajaran sangat dipengaruhi
oleh sifat dari materi yang akan diajarkan, tujuan yang akan dicapai dalam
pembelajaran tersebut, serta tingkat kemampuan peserta didik.
2
Selanjutnya, ciri-ciri model pembelajaran menurut Rusman (2011:145)
adalah sebagai berikut ini.
a. Berdasarkan teori pendidikan dan teori belajar dari para ahli tertentu.
b. Mempunyai misi dan tujuan pendidikan tertentu.
c. Dapat dijadikan pedoman untuk perbaikan kegiatan mengajar di kelas.
d. Memiliki bagian–bagian model yang dinamakan: (1) urutan langkahlangkah
pembelajaran (syntax); (2) adanya prinsip-prinsip reaksi; (3)
sistem sosial; dan (4) sistem pendukung.
e. Memiliki dampak sebagai akibat terapan model pembelajaran.
f. Membuat persiapan mengajar (desain instruksional) dengan pedoman
model pembelajaran yang dipilihnya.
Model pembelajaran berdasarkan teori konstruktivisme meliputi model
pembelajaran terpusat masalah (problem learning centered), pengajaran
konstruktivisme terstruktur (constructivist teaching sequence), pembelajaran
model siklus (the learning cycle model), siklus pembelajaran lima E (five E
learning cycle) dan pembelajaran konstruktivis (constructivist learning model).
Model pembelajaran learning cycle digunakan dalam penelitian ini.
B. Model Pembelajaran Learning Cycle
1. Pengertian
Salah satu pembelajaran yang menerapkan model konstruktivisme adalah
model pembelajaran Learning Cycle (siklus belajar). Model Learning Cycle
pertama kali diperkenalkan oleh Robert Karplus dalam Science Curriculum
Improvement Study (SCIS). Siklus belajar merupakan suatu pengorganisasian
yang memberikan kemudahan untuk penguasaan konsep-konsep baru dan untuk
menata ulang pengetahuan mahasiswa, (Santoso, 2005:34). Menurut Ali (1993)
siklus belajar adalah proses pembelajaran yang di dalamnya terdapat rangkaian
kegiatan yang dilakukan secara tepat dan teratur. Sementara Aksela (2005)
menyatakan dalam siklus belajar suatu pengetahuan tidak dapat dipindahkan
3
begitu saja dari otak seorang dosen ke otak mahasiswanya. Setiap mahasiswa
harus dapat membangun pengetahuan itu di dalam otaknya sendiri karena tugas
seorang dosen hanyalah memfasilitasi.
Pada awalnya model Learning Cycle terdiri atas tiga tahap: eksplorasi
(exproration), pengenalan konsep (concept introduction) dan penerapan konsep
(concept aplication). Pada proses selanjutnya tiga tahap tersebut mengalami
pengembangan. Menurut Lorsbach (dalam Wena, 2011:171), tiga tahap siklus
dikembangkan menjadi lima tahap: (1) pembangkitan minat (engagement), (2)
eksplorasi (exploration), (3) penjelasan (explanation), (4) elaborasi (elaboration/
extention), dan (5) evaluasi (evaluation).
Dari pendapat di atas dapat disimpulkan bahwa learning cycle (siklus
belajar) adalah pembelajaran dengan rangkaian kegiatan yang dilakukan secara
tepat dan teratur dengan tahapan : pembangkitan minat (engagement), eksplorasi
(exploration), penjelasan (explanation), elaborasi (elaboration/ extention), dan
evaluasi (evaluation), setiap mahasiswa harus dapat membangun pengetahuan itu
di dalam otaknya sendiri karena tugas seorang dosen hanyalah memfasilitasi.
2. Fase-fase Siklus Belajar (Learning Cycle)
a. Fase Pembangkitan Minat (Engagement)
Kegiatan pada fase ini bertujuan untuk mendapatkan perhatian
mahasiswa, mendorong kemampuan berpikir, membantu mereka
mengakses pengetahuan awal yang telah dimilikinya. Timbulnya rasa
ingin tahu mahasiswa tentang tema atau topik yang akan dipelajari
dengan memberikan pertanyaan-pertanyaan kepada mahasiswa tentang
fakta/ fenomena yang berhubungan dengan materi yang akan dipelajari.
b. Fase Eksplorasi (Exploration)
Pada fase ini mahasiswa diberi kesempatan untuk bekerja baik secara
mandiri maupun kelompok tanpa instruksi secara langsung dari dosen.
Mahasiswa bekerja memanipulasi suatu objek, melakukan percobaan
(secara ilmiah), melakukan pengamatan, mengumpulkan data, sampai
pada membuat suatu kesimpulan dari percobaan yang dilakukan. Dosen
4
sebagai fasilitator membantu mahasiswa agar bekerja pada ruang lingkup
permasalahan (hipotesis yang dibuat sebelumnya).
c. Fase Penjelasan (Explanation)
Kegiatan pada fase ini bertujuan untuk melengkapi, menyempurnakan,
dan mengembangkan konsep yang diperoleh mahasiswa. Dosen
menjelaskan konsep yang dipahaminya dengan kata-katanya sendiri,
menunjukkan contoh-contoh yang berhubungan dengan konsep untuk
melengkapi penjelasannya, serta bisa memperkenalkan istilah-istilah baru
yang belum diketahui mahasiswa. Pada kegiatan yang berhubungan
dengan percobaan, dosen dapat memperdalam hubungan antar variabel
atau kesimpulan yang diperoleh mahasiswa. Sehingga, mahasiswa dapat
meningkatkan pemahaman konsep yang baru diperolehnya.
d. Fase Penerapan Konsep (Elaboration)
Kegiatan belajar ini mengarahkan mahasiswa menerapkan konsepkonsep
yang telah dipahami dan keterampilan yang dimiliki pada situasi
baru. Kegiatan fase ini bertujuan untuk meningkatkan pemahaman
mahasiswa tentang apa yang telah mereka ketahui, sehingga mahasiswa
dapat melakukan akomodasi melalui hubungan antar konsep dan
pemahaman mahasiswa menjadi lebih mantap.
e. Fase Evaluasi (Evaluation)
Ada dua hal ingin diketahui pada kegiatan belajar ini yaitu pengalaman
belajar yang telah diperoleh mahasiswa dan refleksi untuk melakukan
siklus lebih lanjut yaitu untuk pembelajaran pada konsep berikutnya.
Evaluasi adalah tahap akhir dari siklus belajar. Pada tahap ini, dosen
dapat mengamati pengetahuan atau pemahaman mahasiswa dalam
menerapkan konsep baru. Mahasiswa dapat melakukan evaluasi diri
dengan mangajukan pertanyaan terbuka dan mencari jawaban yang
menggunakan observasi, bukti, dan penjelasan yang diperoleh
sebelumnya. Hasil evalasi diri ini dapat dijadikan dosen sebagai bahan
evaluasi tentang proses penerapan metode siklus belajar yang sedang
diterapkan, apakah sudah berjalan dengan baik, cukup baik, atau masih
5
kurang. Melalui evaluasi diri, mahasiswa juga dapat mengetahui
kekurangan atau kemajuan dalam proses pembelajaran yang sudah
dilakukan.
Secara ringkas tahap-tahap pada model Learning Cycle seperti
terlihat pada Gambar 1.
Gambar 1. Tahapan Model Learning Cycle
3. Manfaat Model Siklus Belajar
Adapun manfaat model siklus belajar adalah:
a. model siklus belajar memberikan suatu format untuk perencanaan
pembelajaran yang dimulai dengan pengalaman langsung yang diakhiri
dengan penguasaan konsep ilmiah dan diakhiri dengan pengayaan konsep;
b. model siklus belajar menggunakan tipe empirik-induktif dalam pengajaran
yang menggambarkan sebuah strategi yang dapat memberi mahasiswa
kesinambungan terhadap konsep-konsep yang menjembatani statistika dan
teknologi;
c. model siklus belajar memberikan pengalaman konkrit pada mahasiswa
yang diperlukan untuk mengembangkan penguasaan konsep;
1
Tahap
Pembangkitan
Minat
3
Tahap
Penjelasan
2
Tahap
Eksplorasi
5
Tahap
Evaluasi
4
Tahap
Elaborasi
6
d. model siklus belajar memberikan kesempatan kepada mahasiswa untuk
bekerja sama dengan teman-temannya;
e. model siklus belajar memberikan kesempatan kepada mahasiswa untuk
mengemukakan konsep atau gagasan yang telah mereka miliki dan
menguji serta mendiskusikan gagasan tersebut secara terbuka;
f. model siklus belajar memudahkan mahasiswa memahami konsep yang
diajarkan. Mereka memperoleh pengalaman nyata yang diperlukan untuk
mengembangkan konsep tersebut lebih lanjut.
Referensi:
Aksela, M. 2005. Disertation: Supporting Meaningful Chemistry Learning and
Higher-order Thinking through Computer-Assisted Inquiry: A Design
Research Aproach. Helsinky : Faculty of Science University of Helsinky.
Ali, Muhammad. 1993. Guru dalam Proses Belajar Mengajar. Bandung: Sinar
Baru Algesindo.
Rusman. 2011. Model-Model Pembelajaran Mengembangkan Profesionalisme
Guru. Jakarta: PT. Rajagrafindo Persada.
Santoso, Slamet. 2005. Dinamika Kelompok. Jakarta: Bumi Aksara.
Suprijono, Agus. 2011. Cooperative Learning: Teori dan Aplikasi PAIKEM.
Yogyakarta: Pustaka Pelajar.
Trianto. 2010. Mendesain Model Pembelajaran Inovatif-Progresif. Jakarta:
Kencana Prenada Media
Wena, Made. 2011. Strategi Pembelajaraj Inovatif Kontemporer Suatu Tinjauan
Konseptual Operasional. Jakarta : Bumi Aksara
HAKEKAT MATEMATIKA
Oleh: M. Jainuri, M.Pd

Untuk memahami hakekat matematika, kita dapat memperhatikan
pengertian istilah matematika. Untuk menjawab pertanyaan : “Apakah
matematika itu ?” tidak dapat dengan mudah dijawab dengan satu atau dua
kalimat begitu saja. Berbagai pendapat muncul tentang pengertian
matematika, dipandang dari pengetahuan dan pengalaman masing-masing
yang berbeda. Pendefinisian matematika sampai saat ini belum ada
kesepakatan yang bulat, namun demikian dapat dikenal melalui
karakteristiknya. Sedangkan karakteristik matematika dapat dipahami melalui
hakekat matematika.
Berdasarkan etimologinya perkataan “matematika” berarti ilmu
pengetahuan yang diperoleh dengan bernalar. Hal ini dimaksudkan bukan
berarti ilmu lain diperoleh tidak melalui penalaran, akan tetapi dalam
matematika lebih menekankan aktivitas dalam dunia rasio (penalaran)
sedangkan dalam ilmu lain lebih menekankan hasil observasi atau
eksperimen di samping penalaran. Pada tahap awal terbentuk dari
pengalaman manusia dalam dunianya secara empiris, karena matematika
sebagai aktifitas manusia kemudian pengalaman itu diproses dalam dunia
rasio, diolah secara analisis dan sintesis dengan penalaran dalam struktur
kognitif sehingga sampai pada suatu kesimpulan berupa konsep-konsep
matematika. Agar konsep-konsep matematika tersebut dapat dipahami oleh
orang lain dan dengan mudah dapat dimanipulasi dengan tepat, maka
digunakan notasi dan istilah yang cermat dan disepakati bersama secara
global (universal) yang dikenal dengan bahasa matematika.
James dan James (1976) mengatakan bahwa matematika adalah
ilmu tentang logika mengenai bentuk, susunan, besaran dan konsep-konsep
yang saling berhubungan satu dengan yang lainnya dengan jumlah banyak
yang terbagi dalam tiga bidang : aljabar, analisis dan geometri. Sedangkan
1
Johnson dan Rising (1972) mangatakan bahwa matematika adalah pola
berpikir, pola mengorganisasikan, pembuktian yang logik, matematika itu
adalah bahasa yang menggunakan istilah yang didefinisikan dengan cermat,
jelas dan akurat, refresentasinya dengan simbol dan padat, lebih berupa
simbol mengenai ide daripada mengenai bunyi.
Sementara Reys dkk (1984) mengemukakan bahwa matematika
adalah telaah tentang pola berpikir, suatu jalan atau pola berpikir, suatu seni,
suatu bahasa dan suatu alat. Kemudian Klein (1973) manyatakan bahwa
matematika bukan pengetahuan menyendiri yang dapat sempurna karena
dirinya sendiri, tetapi adanya matematika itu terutama untuk membantu
dalam memahami dan menguasai permasalahan sosial, ekonomi dan alam.
Hudoyo (1979) mengemukakan bahwa hakikat matematika berkenan
dengan ide-ide, struktur- struktur dan hubungan-hubungannya yang diatur
menurut urutan yang logis. Jadi matematika berkenaan dengan konsepkonsep
yang abstrak. Selanjutnya dikemukakan bahwa apabila matematika
dipandang sebagai struktur dari hubungan-hubungan maka simbol-simbol
formal diperlukan untuk membantu memanipulasi aturan-aturan yang
beroperasi di dalam struktur-struktur.
Menurut Soedjadi (2000) berpendapat bahwa simbol-simbol di dalam
matematika umumnya masih kosong dari arti sehingga dapat diberi arti
sesuai dengan lingkup semestanya. Agar simbol itu berarti maka kita harus
memahami ide yang terkandung di dalam simbol tersebut. Karena itu, hal
terpenting adalah bahwa ide harus dipahami sebelum ide itu sendiri
disimbolkan. Misalnya simbol (x, y) merupakan pasangan simbol “x” dan “y”
yang masih kosong dari arti. Apabila konsep tersebut dipakai dalam geometri
analitik bidang, dapat diartikan sebagai kordinat titik, contohnya A(1,2),
B(6,9), titik A (1,2) titik A terletak pada perpotongan garis X = 1 dan y = 2 titik
B(6,9) artinya titik B terletak pada perpotongan garis X = 6 dan y = 9.
Hubungan–hubungan dengan simbol-simbol dan kemudian mengaplikasikan
konsep-konsep yang dihasilkan kesituasi yang nyata.
2
Selanjutnya Soedjadi mengemukakan bahwa ada beberapa definisi
atau pengertian matematika berdasarkan sudut pandang pembuatnya, yaitu
sebagai berikut:
a. Matematika adalah cabang ilmu pengetahuan eksak dan terorganisisr
secara sistematik
b. Matematika adalah pengetahuan tentang bilangan dan kalkulasi
c. Matematika adalah pengetahuan tentang penalaran logik dan
berhubungan dengan bilangan.
d. Matematika adalah pengetahuan fakta-fakta kuantitatif dan masalah
tentang ruang dan bentuk.
e. Matematika adalah pengetahuan tentang struktur-struktur yang logic
f. Matematika adalah pengetahuan tentang aturan-aturan yang ketat.
Menurut Sumardyono (2004) secara umum definisi matematika dapat
dideskripsikan sebagai berikut, di antaranya:
1. Matematika sebagai struktur yang terorganisir. Agak berbeda dengan
ilmu pengetahuan yang lain, matematika merupakan suatu bangunan
struktur yang terorganisir. Sebagai sebuah struktur, ia terdiri atas
beberapa komponen, yang meliputi aksioma/postulat, pengertian
pangkal/primitif, dan dalil/teorema (termasuk di dalamnya lemma
(teorema pengantar/kecil) dan corolly/sifat).
2. Matematika sebagai alat (tool). Matematika juga sering dipandang
sebagai alat dalammencari solusi pelbagai masalah dalam kehidupan
sehari-hari.
3. Matematika sebagai pola pikir deduktif. Matematika merupakan
pengetahuan yang memiliki pola pikir deduktif, artinya suatu teori atau
pernyataan dalam matematika dapat diterima kebenarannya apabila
telah dibuktikan secara deduktif (umum).
4. Matematika sebagai cara bernalar (the way of thinking). Matematika
dapat pula dipandang sebagai cara bernalar, paling tidak karena
beberapa hal, seperti matematika matematika memuat cara pembuktian
yang sahih (valid), rumus-rumus atau aturan yang umum, atau sifat
penalaran matematika yang sistematis.
3
5. Matematika sebagai bahasa artifisial. Simbol merupakan ciri yang
paling menonjol dalam matematika. Bahasa matematika adalah bahasa
simbol yang bersifat artifisial, yang baru memiliki arti bila dikenakan pada
suatu konteks.
6. Matematika sebagai seni yang kreatif. Penalaran yang logis dan
efisien serta perbendaharaan ide-ide dan pola-pola yang kreatif dan
menakjubkan, maka matematika sering pula disebut sebagai seni,
khususnya merupakan seni berpikir yang kreatif.
Dari pendapat-pendapat di atas dapat ditarik kesimpulan bahwa
matematika tidak hanya berhubungan dengan bilangan-bilangan serta
operasi-operasinya, melainkan juga unsur ruang sebagai sasarannya.
Namun penunjukan kuantitas seperti itu belum memenuhi sasaran
matematika yang lain, yaitu yang ditujukan kepada hubungan pola, bentuk,
dan struktur. Sasaran atau obyek penelaahan matematika adalah fakta,
konsep, operasi, dan prinsip. Obyek penelaahan tersebut menggunakan
simbol-simbol yang kosong dalam arti, ciri ini yang memungkinkan dapat
memasuki wilayah bidang studi atau cabang lain.
Penelaahan matematika tidak sekedar kuantitas, tetapi lebih
dititikberatkan kepada hubungan pola, bentuk, struktur, fakta, operasi
dan prinsip. Sasaran kuantitas tidak banyak artinya dalam matematika.
Hal ini berarti bahwa matematika itu berkenaan dengan gagasan yang
berstruktur yang hubungan-hubungannya diatur secara logis, di mana
konsep-konsepnya abstrak dan penalarannya deduktif.
4
KARAKTERISTIK PESERTA DIDIK
Pengertian Karakteristik Peserta Didik
Karakteristik berasal dari kata karakter yang berarti tabiat watak,
pembawaan, atau kebiasaan yang di miliki oleh individu yang relatif tetap
(Dahlan, 1994). Karakteristik adalah mengacu kepada karakter dan gaya
hidup seseorang serta nilai-nilai yang berkembang secara teratur sehingga
tingkah laku menjadi lebih konsisten dan mudah di perhatikan.(Usman,1989)
Siswa atau anak didik adalah setiap orang yang menerima pengaruh dari
seseorang atau sekelompok orang yang menjalankan pendidikan. Anak didik
adalah unsur penting dalam kegiatan interaksi edukatif karena sebagai pokok
persoalan dalam semua aktifitas pembelajaran (Djamarah, 2000)
Keseluruhan pola kelakuan dan kemampuan yang ada pada siswa
sebagai hasil dari pembawaan dari lingkungan sosialnya sehingga
menentukan pola aktivitas dalam meraih cita-citanya (Sudirman,1990).
Karakteristik siswa adalah aspek-aspek atau kualitas perseorangan siswa
yang terdiri dari minat, sikap, motivasi belajar, gaya belajar kemampuan
berfikir, dan kemampuan awal yang dimiliki (Uno, 2007).
Dari pendapat tersebut dapat disimpulkan bahwa karakteristik peserta
didik mencakup keseluruhan pola tingkah laku, aspek-aspek atau
kualitas yang terdiri dari minat, sikap, motivasi belajar, gaya belajar dan
kemampuan berpikir sebagai hasil pembawaan dan dari lingkungan
sosialnya sehingga menentukan pola aktifitas pembelajaran.
Kalasifikasi Karakteristik Peserta Didik
Pribadi dan lingkungan : Umur, Jenis kelamin, Keadaan ekonomi orang
tua, Kemampuan pra sekolah, Lingkungan tempat tinggal
Psikis : Tingkat Kecerdasan, Perkembangan jiwa anak, Modalitas belajar,
Motivasi, Bakat dan minat.
5
Kalasifikasi Karakteristik Peserta Didik Berdasarkan Potensi
Aliran yang berkaitan dengan potensi manusia menerima pendidikan :
1. Nativisme, Arthur Schopenhour dari Jerman (1788-1860) anak yang
baru lahir membawa bakat kesanggupan dan sifat-sifat tertentu.
2. Empirisme, manusia itu dalam perkembangan pribadinya semata-mata
ditentukan oleh dunia di luar dirinya. John Locke (1632-1704) dari Inggris
dengan teorinya “Tabula Rasa”.
3. Konvergensi, William Stern (1871-1938), yang mengatakan :
“kemungkinan-kemungkinan yang dibawa lahir itu adalah petunjukpetunjuk
nasib dengan ruangan permainan. Dalam ruangan permainan
itulah letaknya pendidikan dalam arti seluas-luasnya
Manfaat Analisis Karakteristik Peserta Didik
1. Guru dapat memperoleh tentang kemampuan awal siswa sebagai
landasan dalam memberikan materi baru dan lanjutan
2. Guru dapat mengatahui tentang luas dan jenis pengalaman belajar
siswa, hal ini berpengaruh terhadap daya serap siswa terhadap materi
baru yang akan disampaikan
3. Guru dapat mengetahui latar belakang sosial dan keluarga siswa.
Meliputi tingkat pendidikan orang tua, sosial ekonomi, emosional dan
mental sehingga guru dapat menajjikan bahan serta metode lebih serasi
dan efisien
4. Guru dapat Mengetahui tingkat pertumbuhan dan perkembangan dan
aspirasi dan kebutuhan siswa
5. Mengetahui tingkat penguasaan yang telah di peroleh siswa sebelumnya
6
BELAJAR AKTIF
Umumnya, proses pembelajaran dimaknai sebagai guru menjelaskan
materi dan siswa mendengarkan secara pasif. Akan tetapi, kenyataan
menunjukkan bahwa kualitas proses pembelajaran akan meningkat jika
siswa (peserta proses pembelajaran) diberikan kesempatan yang luas untuk
bertanya, berdiskusi, dan menggunakan secara aktif pengetahuan dan
keterampilannya. Dengan kata lain, perluasan pengakomodasian potensi
aktif siswa akan membuat materi pembelajaran dapat dipahami dan dikuasai
secara lebih baik.
Pembelajaran aktif adalah segala bentuk pembelajaran yang
memungkinkan siswa berperan secara aktif dalam proses pembelajaran itu
sendiri baik dalam bentuk interaksi antar siswa maupun siswa dengan guru
dalam proses pembelajaran tersebut.
Menurut Bonwell (1995), pembelajaran aktif memiliki karakteristik
sebagai berikut: (1) Penekanan proses pembelajaran bukan pada
penyampaian informasi oleh guru melainkan pada pengembangan
ketrampilan pemikiran analitis dan kritis terhadap topik atau permasalahan
yang dibahas; (2) Siswa tidak hanya mendengarkan materi pelajaran secara
pasif tetapi mengerjakan sesuatu yang berkaitan dengan materi; (3)
Penekanan pada eksplorasi nilai-nilai dan sikap-sikap berkenaan dengan
materi pelajaran; (4) Siswa lebih banyak dituntut untuk berpikir kritis,
menganalisa dan melakukan evaluasi; dan (5) Umpan-balik yang lebih cepat
akan terjadi pada proses pembelajaran.
Suatu proses pembelajaran aktif memungkinkan diperolehnya
beberapa hal. Pertama, interaksi yang berkembang selama proses
pembelajaran akan bermuara pada hal-hal yang positif dengan konsolidasi
pengetahuan yang dipelajari hanya dapat diperoleh secara bersama-sama
melalui eksplorasi aktif dalam belajar. Kedua, setiap individu harus terlibat
aktif dalam proses pembelajaran dan guru harus dapat mendapatkan
penilaian untuk setiap siswa sehingga terjadi peningkatan kualitas individu.
Ketiga, proses pembelajaran aktif ini agar dapat berjalan dengan efektif
7
diperlukan tingkat kerjasama yang tinggi sejalan dengan kecerdasan
emosional dan sosial (EQ dan SQ). Dengan demikian kualitas pembelajaran
dapat ditingkatkan sehingga penguasaan materi juga meningkat.
Salah satu metode yang menunjang dan berakar pada kegiatan
pembelajaran aktif adalah Belajar Aktif. (Karjawati, 1995) menyatakan bahwa
Belajar Aktif adalah metode di mana guru mengajak siswa belajar di luar
kelas untuk melihat peristiwa langsung di lapangan dengan tujuan untuk
mengakrabkan siswa dengan lingkungannya. Melalui Belajar Aktif lingkungan
di luar sekolah dapat digunakan sebagai sumber belajar. Peran guru disini
adalah sebagai motivator, artinya guru sebagai pemandu agar siswa belajar
secara aktif, kreatif dan akrab dengan lingkungaan. Belajar Aktif pada proses
pembelajaran menjadi sarana memupuk kreatifitas inisiatif kemandirian,
kerjasama atau gotong royong dan meningkatkan minat pada kegiatan
pembelajaran.
Apabila sebuah kegiatan pembelajaran yang dilakukan dengan Belajar
Aktif ingin mencapai tujuan, maka sebaiknya memperhatikan beberapa faktor
sebagai berikut:
Pertama, kebermaknaan. Pemahaman akan meningkat bila informasi
baru dengan gagasan dan pengetahuan yang telah dikuasai oleh murid.
Khususnya, istilah dan konsep sering sulit dipahami. Pemahaman tersebut
perlu digali melalui pengalaman siswa itu sendiri. Artinya, materi
pembelajaran akan terasa bermakna bagi siswa ketika siswa menemukan
korelasi langsung dengan lingkungannya.
Kedua, penguatan. terdiri atas pengulangan oleh guru dan latihan oleh
siswa. Pengulangan tersebut dan latihan dapat menanggulangi proses lupa.
Dalam Belajar Aktif, penguatan merupakan elemen yang harus diperhatikan.
Ketiga, umpan balik. Kegiatan belajar akan efektif bila siswa menerima
dengan cepat tentang hasil-hasil tugas belajar tersebut. Umpan balik
sederhana, misalnya koreksi jawaban siswa atas pertanyaan guru selama
pelajaran berlangsung, atau koreksi pekerjaan siswa.
Penerapan belajar aktif didasarkan pada 3 hal : karakteristik anak
(sifat ingin tahu dan imajinasi), hakikat belajar (proses menemukan dan
8
membangun sendiri makna/pengertian dari suatu informasi/pengalaman
berdasarkan persepsi, pikiran dan perasaaan) dan karakteristik lulusan
yang dikehendaki. Karakteristik lulusan yang dikehendaki adalah yang peka
(berpikiran tajam, kritis, tanggap terhadap pikiran dan perasaan orang
lain), mandiri (berani dan mampu bertindak tanpa selalu tergantung pada
orang lain, kreatif) dan bertanggung jawab (siap menerima akibat dari
keputusan dan tindakan yang diambil).
Suasana belajar aktif adalah suasana belajar-mengajar yang membuat
siswa dapat melakukan : pengalaman, interaksi, komunikasi dan refleksi.
Pengalaman langsung mengaktifkan lebih banyak indera daripada sekedar
mendengarkan penjelasan guru; dan kualitas belajarnya akan meningkat
dengan adanya interaksi dengan orang lain melalui diskusi, saling bertanya
dan saling menjelaskan. Pemahaman yang telah diperoleh akan semakin
mantap ketika siswa mengungkapkan pikiran dan perasaannya, baik secara
lisan maupun tertulis (komunikasi). Akhirnya ketika gagasan yang
dikemukakan mendapat tanggapan dari orang lain, siswa yang bersangkutan
akan merenungkan kembali gagasannya tadi (refleksi) yang kemudian akan
memperbaiki atau memperkuat gagasannya. Refleksi dapat dipicu melalui
interaksi dan komunikasi, antara lain berupa umpan balik dalam bentuk
pertanyaan yang menantang dari gurunya.
9
STRATEGI PEMBELAJARAN MATEMATIKA
Pada hakekatnya belajar matematika adalah berfikir dan berbuat atau
mengerjakan matematika. Di sinilah makna dari strategi pembelajaran
matematika adalah strategi pembelajaran aktif yang di tandai oleh faktor.
1. Interaksi antara seluruh komponen dalam proses belajar mengajar, di
antaranya antara dua komponen utama yaitu guru dan siswa
2. Berfungsinya secara optimal yang meliputi indra , emosi, karsa, karya,
dan nalar. Hal itu dapat berlangsung antara lain jika proses itu
melibatkan aspek visual, audio, maupun teks ( Anderson, 1981 ).
Dua hal penting yang merupakan bagian dari tujuan pembelajaran
matematika adalah pembentukan sifat yaitu pola berpikir kritis dan kreatif.
Dalam proses pembelajaran perlu memperhatikan daya imajinasi dan rasa
ingin tahu dari peserta didik. Peserta didik harus dibiasakan bertanya dan
berpendapat sehingga proses pembelajaran matematika lebih bermakna.
Dalam pemilihan strategi pembelajaran matematika, harus melibatkan
siswa aktif dalam belajar baik secara mental, fisik maupun sosial. Peserta
didik dibawa ke arah mengamati, menebak, berbuat, mencoba, maupun
menjawab pertanyaan mengapa dan kalau mungkin mendebat. Prinsip
belajar aktif inilah yang diharapkan dapat menumbuhkan sasaran
pembelajaran matematika yang kreatif dan kritis.
Penerapan strategi pembelajaran matematika harus bertumpu pada
optimalisasi interaksi semua unsur pembelajaran dan optimalisasi
keterlibatan seluruh indra siswa. Penyampaian bahan ajar perlu beragam,
tidak harus terus-menerus dilaksanakan di dalam kelas, tetapi sesekali
pelaksanaan pembelajaran matematika dapat dilakukan di luar kelas.
Demi peningkatan optimalisasi interaksi dalam pembelajaran
matematika, untuk pokok bahasan/sub pokok bahasan tertentu mungkin
dapat dengan pendekatan penemuan, pemecahan masalah atau
penyelidikan. Demikian pula dengan soal-soal untuk balikan atau tugas dapat
berupa soal yang mengarah pada jawaban lebih dari satu cara untuk
menyelesaikannya, dan memungkinkan peserta didik untuk mencoba dengan
10
berbagai cara sepanjang cara tersebut benar, atau permasalahan openended.
Penekanan pembelajaran matematika tidak hanya pada melatih
keterampilan dan hafal fakta, tetapi pada pemahaman konsep. Tidak hanya
kepada “bagaimana” suatu soal harus diselesaikan, tetapi juga pada
“mengapa” soal tersebut diselesaikan dengan cara tertentu.
Subscribe to RSS Feed Follow me on Twitter!